Transformations of integrable hydrodynamic chains and their hydrodynamic reductions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transformations of integrable hydrodynamic chains and their hydrodynamic reductions

Hydrodynamic reductions of the hydrodynamic chain associated with dispersionless limit of 2+1 Harry Dym equation are found by the Miura type and reciprocal transformations applied to the Benney hydrodynamic chain.

متن کامل

Nonlocal kinetic equation : integrable hydrodynamic reductions , symmetries and exact solutions

By Gennady A. El†, Anatoly M. Kamchatnov‡, Maxim V. Pavlov z and Sergey A. Zykov § † Department of Mathematical Sciences, Loughborough University, Loughborough, UK ‡Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, Russia z Lebedev Physical Institute, Russian Academy of Sciences, Moscow § SISSA, Trieste, Italy, and Institute of Metal Physics, Urals Division of Russ...

متن کامل

Hydrodynamic chains and a classification of their Poisson brackets

Necessary and sufficient conditions for an existence of the Poisson brackets significantly simplify in the Liouville coordinates. The corresponding equations can be integrated. Thus, a description of local Hamiltonian structures is a first step in a description of integrable hydrodynamic chains. The concept of M Poisson bracket is introduced. Several new Poisson brackets are presented.

متن کامل

Explicit solutions of the WDVV equation determined by the “ flat ” hydrodynamic reductions of the Egorov hydrodynamic chains . Maxim V . Pavlov

Classification of the Egorov hydrodynamic chain and corresponding 2+1 quasilinear system is given in [33]. In this paper we present a general construction of explicit solutions for the WDVV equation associated with Hamiltonian hydrodynamic reductions of these Egorov hydrodynamic chains.

متن کامل

Matrix equations of hydrodynamic type as lower - dimensional reductions of S - integrable systems

We show that any classical matrix Q × Q S-integrable Partial Differential Equation (PDE) obtainable as commutativity condition of a certain type of vector fields possesses a family of lower-dimensional reductions represented by the matrix Q × n 0 Q quasilinear first order PDEs solved in [29] by the method of characteristics. In turn, these PDEs admit two types of available particular solutions:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2008

ISSN: 1072-3374,1573-8795

DOI: 10.1007/s10958-008-9021-7