Transformations of integrable hydrodynamic chains and their hydrodynamic reductions
نویسندگان
چکیده
منابع مشابه
Transformations of integrable hydrodynamic chains and their hydrodynamic reductions
Hydrodynamic reductions of the hydrodynamic chain associated with dispersionless limit of 2+1 Harry Dym equation are found by the Miura type and reciprocal transformations applied to the Benney hydrodynamic chain.
متن کاملNonlocal kinetic equation : integrable hydrodynamic reductions , symmetries and exact solutions
By Gennady A. El†, Anatoly M. Kamchatnov‡, Maxim V. Pavlov z and Sergey A. Zykov § † Department of Mathematical Sciences, Loughborough University, Loughborough, UK ‡Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, Russia z Lebedev Physical Institute, Russian Academy of Sciences, Moscow § SISSA, Trieste, Italy, and Institute of Metal Physics, Urals Division of Russ...
متن کاملHydrodynamic chains and a classification of their Poisson brackets
Necessary and sufficient conditions for an existence of the Poisson brackets significantly simplify in the Liouville coordinates. The corresponding equations can be integrated. Thus, a description of local Hamiltonian structures is a first step in a description of integrable hydrodynamic chains. The concept of M Poisson bracket is introduced. Several new Poisson brackets are presented.
متن کاملExplicit solutions of the WDVV equation determined by the “ flat ” hydrodynamic reductions of the Egorov hydrodynamic chains . Maxim V . Pavlov
Classification of the Egorov hydrodynamic chain and corresponding 2+1 quasilinear system is given in [33]. In this paper we present a general construction of explicit solutions for the WDVV equation associated with Hamiltonian hydrodynamic reductions of these Egorov hydrodynamic chains.
متن کاملMatrix equations of hydrodynamic type as lower - dimensional reductions of S - integrable systems
We show that any classical matrix Q × Q S-integrable Partial Differential Equation (PDE) obtainable as commutativity condition of a certain type of vector fields possesses a family of lower-dimensional reductions represented by the matrix Q × n 0 Q quasilinear first order PDEs solved in [29] by the method of characteristics. In turn, these PDEs admit two types of available particular solutions:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2008
ISSN: 1072-3374,1573-8795
DOI: 10.1007/s10958-008-9021-7